

MECHANICS OF FLUIDS

Lecture 1 – Introduction Lecturer: Hamidreza Norouzi

- All the art-work contents of this lecture are obtained from the following sources, unless otherwise stated:
 - Fluid Mechanics, 8th edition, Frank M. White, McGraw-Hill, 2016.
 - Fluid Mechanics: Fundamental and Applications, 3rd edition, Yunus A. Cengel, John M. Cimbala, McGraw-Hill, 2014.

Basic concepts (dimensions and units)

Primary dimensions

Primary dimension	SI unit	BG unit	Conversion factor
Mass {M}	Kilogram (kg)	Slug	1 slug = 14.5939 kg
Length $\{L\}$	Meter (m)	Foot (ft)	1 ft = 0.3048 m
Time $\{T\}$	Second (s)	Second (s)	1 s = 1 s
Temperature $\{\Theta\}$	Kelvin (K)	Rankine (°R)	$1 K = 1.8^{\circ}R$

1 slug = 32.174 lbm

■ gc, for converting mass to force

$$1 N = 1 kg \times 1 \frac{m}{s^2} \qquad 1 lbf = 1 lb \times 32.174 \frac{ft}{s^2} \qquad 1 lbf = 1 slug \times 1 \frac{ft}{s^2}$$

Amirkabir University of Technology

Basic Concepts (stress)

Force divided by surface is stress

- Normal
- Shear

 $\sigma_n = \lim_{\Delta A \to 0} \frac{\Delta F_n}{\Delta A}$

Basic Concepts (stress)

- Fluids (in physics)
 - Gas: unrestricted motion of molecules which has no definite volume
 - Liquid: restricted motion of molecules which occupy almost constant volume
- What do we mean by fluid in mechanics of fluids?
 - Any liquid and gas that move under the action of shear stress, no matter how small the shear stress is.

Basic Concepts (continuum vs. discrete)

Consider the flow of fluid, density is defined as:

Amirkabir University of Technology

Basic Concepts (continuum vs. discrete)

For all liquids and most of gases the critical volume (δν*) is around 10⁻⁹ mm³(each edge is around 1 microns).

Mass density {M/L³}:

Air (1 atm, 15 °C)	Water (1 atm, 4°C)
1.225 kg/m ³	1000 kg/m ³
0.0765 lb/ft ³	62.43 lb/ft ³

Basic Concepts

Gas density varies with pressure and temperature for pure gases.

- In fluid mechanics calculations:
 - For trivial calculations of sub-sonic flows (flows with low speed), it is assumed to be constant
 - For detailed calculations of sub-sonic flow, it is calculated by equation of state (EOS)
 - For near sonic flows it is always assumed inconstant.
- Liquid density varies with temperature only (is a poor function of pressure)
 - In fluid mechanics calculations: it is usually assumed constant

Pressure results from compressive, normal forces (from fluid molecules) acting on the surface: ΔF_n

$$P = \lim_{\Delta A \to 0} \frac{\Delta F_n}{\Delta A}$$

- Dimensions {M/(L.T²)}
- Common units and values
 - 1 atm ≈14.7 psi = 101.325 kPa = 760 mmHg
 - 1 psi = 144 psf
 - 100 kPa = 1 bar

Amirkabir University of Technology

Source: mechanics of fluids, Potter et al. 4th edition, 2011.

Basic Concepts (pressure)

Amirkabir University of Technology

11

Source https://www.process-cooling.com/

Fluid Properties (thermodynamic props.)

Specific weight: volumetric weight (weight divided by volume)

$$\begin{split} \gamma &= \rho g \\ \gamma_{\rm air} &= (1.205 \ {\rm kg/m^3})(9.807 \ {\rm m/s^2}) = 11.8 \ {\rm N/m^3} = 0.0752 \ {\rm lbf/ft^3} \\ \gamma_{\rm water} &= (998 \ {\rm kg/m^3})(9.807 \ {\rm m/s^2}) = 9790 \ {\rm N/m^3} = 62.4 \ {\rm lbf/ft^3} \end{split}$$

Specific gravity:

$$SG_{gas} = \frac{\rho_{gas}}{\rho_{air}} = \frac{\rho_{gas}}{1.205 \text{ kg/m}^3}$$
 Air at 20 °C, 1 atm

$$SG_{liquid} = \frac{\rho_{liquid}}{\rho_{water}} = \frac{\rho_{liquid}}{1000 \text{ kg/m}^3}$$
 Water at 4 °C

13

Fluid Properties (viscosity)

The internal stickiness of the fluid or the resistance of the fluid to start moving when it is influenced by a shear stress.

Dimension {M/(L.T)}

- Common units and values:
 - Gases: function of T and weak function of P
 - Liquids: function of T
- Air (20 °C, 1 atm): 1.81 ×10⁻⁵ Pa.s
- Water (20 °C): 1 mPa.s

For common fluid such as water, oil, air

Fluid Properties (viscosity)

For a Newtonian fluid (1D flow):

$$\tau = \mu \frac{d\theta}{dt} = \mu \frac{du}{dy}$$

Dynamic viscosity or Absolute viscosity

- Kinematic viscosity
 - Dimension $\{L^2/s\}$

$$u = \frac{\mu}{\rho}$$

Sign convention: From greater y to lesser y

Fluid Properties (viscosity)

For a Newtonian Fluid

Rate of deformation, du/dy

Fluid Properties (viscosity)

- Dilatant (Shear thickening fluid): Starch, sand suspension
- Pseudoplastic (Shear thinning fluid): some paints and polymer solutions
- Bingham plastic: toothpaste

Hereafter, we consider the fluid as **Newtonian**, unless otherwise stated!

Rate of deformation, *du/dy*

Flow Between Parallel Plates (laminar flow)

- If the plates are long enough, an steady one-dimensional shearing motion will be developed.
- Later it will be shown that:

20

Amirkabir University of Technology

- The acceleration is zero
- Pressure gradient does not exist in the flow direction
- At these conditions the shear rate is constant throughout the parallel layers of the fluid.

Flow Between Parallel Plates (laminar flow)

$$u = a + by$$

$$u = \begin{cases} 0 = a + b (0) & \text{at } y = 0 \\ V = a + b (h) & \text{at } y = h \end{cases}$$

 $u = V \frac{y}{r}$

No-slip boundary conditions

No-slip condition

Example

Suppose that the fluid being sheared between two parallel plates is SAE 30 oil at 20 °C. Compute the shear stress in the oil if V = 3 m/s and h = 2 cm.

- Solution:
 - Assumptions: steady condition, linear velocity, no-slip condition on plates
 - Property: SAE 30 oil viscosity at 20 ℃ is: 0.29 Pa.s

$$\tau = \mu \frac{V}{h} = \left(0.29 \,\frac{\text{kg}}{\text{m} \cdot \text{s}}\right) \frac{(3 \text{ m/s})}{(0.02 \text{ m})} = 43.5 \,\frac{\text{kg} \cdot \text{m/s}^2}{\text{m}^2} = 43.5 \,\frac{\text{N}}{\text{m}^2} \approx 44 \text{Pa}$$

Viscometer (rotary)

Obtain a formula that relates the viscosity to the torque?

Source: tainstruments.com

 $\tau = \mu \left| \frac{du}{dr} \right|$

$$\left|\frac{du}{dr}\right| = \frac{\omega R}{h}$$

$$T = \text{stress} \times \text{area} \times \text{moment arm}$$
$$= \tau \times 2\pi RL \times R$$
$$= \mu \frac{\omega R}{h} \times 2\pi RL \times R = \frac{2\pi R^3 \omega L\mu}{h}$$

Example

- A viscometer is constructed with two 30-cm-long concentric cylinders, one 20.0 cm in diameter and the other 20.2 cm in diameter. A torque of 0.13 Nm is required to rotate the inner cylinder at 400 rpm (revolutions per minute). Calculate the viscosity.
 - Step1: conversion of units

R = $d_1/2 = 0.2/2 = 0.1 \text{ m}$, h = $(d_2-d_1)/2 = 0.1 \text{ cm} = 0.001 \text{ m}$

• $\omega = 400 \text{ rpm} = 400 * 2\pi/60 = 41.89 \text{ rad/s}$

- Step2:

 $\mu = \frac{Th}{2\pi R^3 \omega L} = \frac{0.13 \, N.m \, (0.001 \, m)}{2\pi (0.1 \, m)^3 \left(41.89 \, \frac{rad}{s}\right)(0.3 \, m)} = 0.001646 \, N.s/m^2$

Parallel Plate Viscometer

Liquid film of viscosity μ and thickness h << R lies between a solid wall and a circular disk rotating at Ω. Derive a formula for the torque M required to rotate the disk.

Fixed wall

Parallel Plate Viscometer

Assumptions: steady flow, linear velocity, noslip on the plates, neglecting end effects, air drag on disk

$$u = V \frac{y}{h}$$
 $\tau(r) = \mu \frac{V(r)}{h}$

$$dM = (\tau)(dA)r = \left(\frac{\mu\Omega r}{h}\right)(2\pi r \, dr)r$$

$$M = \int dM = \frac{2\pi\mu\Omega}{h} \int_{0}^{R} r^{3}dr = \frac{\pi\mu\Omega R^{4}}{2h}$$

