

MECHANICS OF FLUIDS

Lecture 2 – Fluid Statics 1 Lecturer: Hamidreza Norouzi

- All the art-work contents of this lecture are obtained from the following sources, unless otherwise stated:
 - Fluid Mechanics, 8th edition, Frank M. White, McGraw-Hill, 2016.
 - Fluid Mechanics: Fundamental and Applications, 3rd edition, Yunus A. Cengel, John M. Cimbala, McGraw-Hill, 2014.

Some concepts of pressure

Equation of pressure variation in fluids at rest

Pressure variations in liquid and gases at rest

Manometers

source: https://en.wikipedia.org/wiki/Pressure_measurement source: https://www.oao-7.xyz/

What is pressure?

- Pressure is a scalar (thermodynamic) property (like temperature), it is not force and has no direction.
- It exerts normal force/stress on any submerged surface in the fluid.
- It creates compressive force due to molecular contacts (bombardments) on the surface.
- In a fluid at rest, there is no horizontal change in the pressure and the vertical change in the pressure is proportional to density.

- How?

What is pressure? (pressure at a point)

- Consider a small wedge with dimensions Δz , Δx and Δs and depth b.
- Horizontal and vertical force balance on this element:

$$\sum F_x = 0 = p_x b \Delta z - p_n b \Delta s \sin \theta$$

$$\sum F_z = 0 = p_z b \Delta x - p_n b \Delta s \cos \theta - \frac{1}{2} \rho_g b \Delta x \Delta z$$

z (up)

$$\Delta s \sin \theta = \Delta z$$

$$\Delta s \cos \theta = \Delta x$$
Substitution
$$p_x = p_n \qquad p_z = p_n + \frac{1}{2}\rho g \ \Delta z$$

If $\Delta z \rightarrow 0$, wedge will become a point and hence:

$$p_{x} = p_{n}$$

$$p_{z} = p_{n} + \frac{1}{2}\rho g \Delta z$$

$$\Delta z \neq 0$$

$$p_{x} = p_{z} = p_{n} = p$$

Pressure in a fluid at rest is a point property and independent of orientation

Pressure variation in fluids

The net pressure force on the element

$$d\mathbf{F}_{\text{press}} = \left(-\mathbf{i}\frac{\partial p}{\partial x} - \mathbf{j}\frac{\partial p}{\partial y} - \mathbf{k}\frac{\partial p}{\partial z}\right)dx \, dy \, dz \qquad \text{Recall gradient operator}$$
$$\nabla = \text{gradient operator} = \mathbf{i}\frac{\partial}{\partial x} + \mathbf{j}\frac{\partial}{\partial y} + \mathbf{k}\frac{\partial}{\partial z}$$

■ The force per unit volume is then:

Pressure gradient is the net surface force that acts on the sides of the elements.

Pressure variation in fluids

Gravity is a body force acting on the entire mass of the element:

Amirkabir University of Technology

9

If the fluid is in the motion, a net surface force due to viscous stresses (will be covered in next lectures in detail) will act on the element which is called f_{visc}

Conservation of the linear momentum, Newton's second law

$$\sum \mathbf{f} = \mathbf{f}_{\text{press}} + \mathbf{f}_{\text{grav}} + \mathbf{f}_{\text{visc}} = -\nabla p + \rho \mathbf{g} + \mathbf{f}_{\text{visc}} = \rho \mathbf{a}$$

Linear Momentum (force balance) equation on the fluid element (close system)

Pressure distribution in fluid at rest

If the fluid is at rest, the acceleration is zero a = 0 and there is no viscous stress/force on the element f_{visc} = 0

$$\nabla p = \rho \mathbf{g}$$

Local gravity when the positive z-direction is considered upward

$$g = -g\mathbf{k}$$
 $\frac{\partial p}{\partial x} = 0$ $\frac{\partial p}{\partial y} = 0$ $\frac{\partial p}{\partial z} = -\rho g = -\gamma$
 $\frac{dp}{dz} = -\gamma$
 $p_2 - p_1 = -\int_1^2 \gamma \, dz$

Pressure variation in liquids at rest

For most of liquids at constant temperature, we can neglect the variation of liquid density with pressure (incompressible).

$$p_{2} - p_{1} = -\int_{1}^{2} \gamma \, dz \qquad p = \text{cte} \qquad p_{2} - p_{1} = -\gamma \, (z_{2} - z_{1})$$

$$p_{2} - p_{1} = -\gamma \, (z_{2} - z_{1})$$

$$p_{2} - p_{1} = -\gamma \, (z_{2} - z_{1})$$

$$p_{2} - p_{1} = -\gamma \, (z_{2} - z_{1})$$

$$p_{2} - p_{1} = -\gamma \, (z_{2} - z_{1})$$

$$p_{2} - p_{1} = -\gamma \, (z_{2} - z_{1})$$

$$p_{2} - p_{1} = -\gamma \, (z_{2} - z_{1})$$

$$p_{3} = 20^{\circ} \text{C}$$

$$p_{3}$$

Pressure variation in liquids at rest

Pressure variation in gases at rest (in atmosphere)

Gases are compressible, and density changes with pressure.
Assuming ideal gas law, $p = \rho RT$

$$\frac{dp}{dz} = -\rho g = -\frac{p}{RT}g \qquad \Longrightarrow \qquad \int_{1}^{2} \frac{dp}{p} = \ln \frac{p_2}{p_1} = -\frac{g}{R} \int_{1}^{2} \frac{dz}{T}$$

• Assuming constant temperature for the atmosphere, T_0 :

$$p_2 = p_1 \exp\left[-\frac{g(z_2 - z_1)}{RT_0}\right]$$
 Eq. (1)

Pressure variation in gases at rest (in atmosphere)

Assuming linear variation of temperature (in troposphere, sea level to 36000 ft):

$$B_0 - B_Z$$
 With
 $T_0 = 288.15 \text{ K}$
 $B = 0.0065 \text{ K/m}$

 $T \approx T$

Pressure variation equation in troposphere (sea level to 36000 ft):

$$p = p_a \left(1 - \frac{Bz}{T_0}\right)^{g/(RB)}$$
 where $\frac{g}{RB} = 5.26$ (air) Eq. (2)

Pressure variation in gases at rest (in atmosphere)

Pressure variation in gases at rest (short distances)

Barometer

It is used to measure the atmospheric pressure.

Evangelista Torricelli (16th century)

At standard atmosphere h reads 760 mm.

If sea-level pressure is 101,350 Pa, compute the standard pressure at an altitude of 5000 m, using (*a*) the exact formula and (*b*) an isothermal assumption at a standard sea-level temperature of 15 °C. Is the isothermal approximation adequate?

Answer:

Part (a): 54000 Pa = 54 kPa

Part (b): 56000 Pa = 56 kPa

The difference is around 4%.

It can be shown that this error is less than 1% for elevation variations up to 200 m

20

Example

Part (a):

$$p = p_a \left(1 - \frac{Bz}{T_0}\right)^{g/(RB)}$$
 With
$$T_0 = 28$$

$$B = 0.0$$

With

$$T_0 = 288.15 \text{ K}$$

 $B = 0.0065 \text{ K/m}$
 $R = 8314 \text{ J/(K.kmol)}$
For air: $8314/29 = 287 \text{ J/(K.kg)}$
 $= 287 \text{ m}^2/(\text{K.s}^2)$

$$p = p_a \left[1 - \frac{(0.00650 \text{ K/m})(5000 \text{ m})}{288.16 \text{ K}} \right]^{5.26} = (101,350 \text{ Pa})(0.8872)^{5.26}$$
$$= 101,350(0.5328) = 54,000 \text{ Pa}$$

Part (b):
$$p_2 = p_1 \exp \left[-\frac{g(z_2 - z_1)}{RT_0}\right]$$

$$p \approx p_a \exp\left(-\frac{gz}{RT}\right) = (101,350 \text{ Pa}) \exp\left\{-\frac{(9.807 \text{ m/s}^2)(5000 \text{ m})}{[287 \text{ m}^2/(\text{s}^2 \cdot \text{ K})](288.16 \text{ K})}\right\}$$

 $= (101,350 \text{ Pa}) \exp(-0.5929) \approx 56,000 \text{ Pa}$

How does the pressure changes into the depth of a liquid column?

Multiple layers of fluid

A simple rule: Pressure increase downward and pressure decrease upward in the fluid column

Manometer

A manometer is an open U-tube device which measures the gage of a point relative to the atmosphere.

- 1) If fluid 1 (A) is the air, ρ_1 can be ignored and the height difference reading is the gage pressure.
- 2) For a better resolution (or for low pressure differences) the water or oil is selected and for high pressure changes mercury.

A manometer is used to measure the pressure of a gas in a tank. The fluid used has a specific gravity of 0.85, and the manometer column height is 55 cm. If the local atmospheric pressure is 96 kPa, determine the absolute pressure within the tank.

=

Recall: $1 \text{ N} = 1 \text{ kg.m/s}^2$

What is the relation between pressures at points A and B?

$$p_{A} + h_{1}\gamma_{1} - h_{2}\gamma_{2} + h_{3}\gamma_{3} - h_{4}\gamma_{4} = p_{B}$$

Water in a tank is pressurized by air, and the pressure is measured by a multifluid manometer. The tank is located on a mountain at an altitude of 1400 m where the atmospheric pressure is 85.6 kPa. Determine the air pressure in the tank if h_1 = 0.1 m, h_2 = 0.2 m, and h_3 = 0.35 m. Take the densities of water, oil, and mercury to be 1000 kg/m³, 850 kg/m³, and 13,600 kg/m^3 , respectively.

$$P_{Air} + h_1 \gamma_w + h_2 \gamma_{oil} - h_3 \gamma_M = P_2 = P_{atm}$$

$$\begin{split} P_{Air} + 0.1 \ m \ (1000 \times 9.81 \ N/m^3) + \\ 0.2 \ m \ (850 \times 9.81 \ N/m^3) - \\ 0.35 \ m \ (13600 \ast 9.81 \ N/m^3) = 85.6 \ kPa \end{split}$$

P_{Air} + 981 Pa + 1667.7 Pa - 46696 Pa = 85.6 kPa

 $P_{Air} = 85.6 \text{ kPa} + (44046/1000)\text{ kPa} = 129.7 \text{ kPa}$

