MECHANICS OF
FLUIDS

Lecture 5 - Integral Formulation
Reynolds theorem and Mass conservation
Lecturer: Hamidreza Norouzi

Amirkabir University of Technology 1



Note

m All the art-work contents of this lecture are obtained from the
following sources, unless otherwise stated:

— Fluid Mechanics, 8" edition, Frank M. White, McGraw-Hill,
2016.

- Fluid Mechanics: Fundamental and Applications, 3™ edition,
Yunus A. Cengel, John M. Cimbala, McGraw-Hill, 2014.
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Basic concepts

= System: quantity of matter or a region in space chosen for Study. region
outside the system is called the surroundings.

= The real or imaginary surface that separates the system from its surroundings
is called the boundary.

= Control mass (closed system): 1t\)/loviélg
. . ounaar
= Mass is fixed and does not cross the i
boundaries

= Energy in the form of work and heat can
Ccross the boundaries.

= The boundaries can be fixed or moving

= A closed system with no energy exchange is |
called isolated system ll Fixed

boundary




Basic concepts

= Control volume (open system):

= Both mass and energy can cross the boundaries of the control
volume

Imaginary
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Basic concepts

m Lagrangian formulation

m Eulerian formulation

Control volume
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Basic concepts

m Basic laws in mechanics of fluids
— First law for a closed system: conservation of mass

- Second law for a closed system: conservation of linear
momentum (Newton’s second law)

— Third law for a closed system: conservation of energy (first law
of thermodynamic)
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Mass & volume flow across a control surface

m The volume of fluid (dV) which passes through and elemental
area dA during dt seconds is:

dV = VdtdAcos 8 = (V- -n)dAdt >

m The total flow rate of fluid through the surface:

dA

0 = [(v ‘n) dA = [VH::!A

A 5

m and mass flow rate: \
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. Control surface \
m = [p(V-n)dA = [pV”a’A \

5 8




Mass & volume flow across a control surface

m If density is constant, average velocity is obtained by (volume-
average velocity):

vV Ql[(v ) dA
v T AT A "

m And if density is not constant, average density is obtained:

I
= —|pdA
Pay A[’O

m mass flow rate can be approximated by:

m = (p{V "n) dA =V, p,, A

5
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Example

For steady viscous flow through a circular tube,
the axial velocity profile is given approximately

by:
u= U, (1 —%)

m

For laminar flow m = 1/2 and for turbulent flow
m = 1/7. Compute the average velocity if the
density is constant.

u = (no slip)
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Example

| [ 1 ("
V.. :—Ju(m z—J U.;,(I —i) 277 dr
A R? . R

p)
V., = U

0 (1 +m)2 +m)

m~1/2

S v,=0.53U,
m=1/7

V., =0.82 U,

u = (no slip)



Reynolds Transform Theorem (fixed cv)

System at

time t + dt v

vuul ()
Sy'stem o X/ X n, Unit outward
time 1 g;‘ normal to dA
Fixed
control
gﬁ volume
2 S
<
D
|—
Y
(@)
(D -
3 %
= ‘..%\ Arbit
rbitrary
D ; ‘ .
= n, Unit outward ‘ I/ fixed
z:c normal to dA control
= surface
<
— CS
d] ;“ = Vm d"‘in COS Hin lh ‘[] ;|ul —= ":)ul ‘1““ out COS 900( LIY

=_VendA dt =VendAd:




Reynolds Transform Theorem (fixed cv)

If B is the extensive property of CV like
(mass, energy, momentum)

System at
time ¢ + dt

System at
time ¢

n, Unit outward
normal to dA

Fixed
control
volume
CV

dB

BCV:J' ﬁdﬁ’i:J ﬁpdoif' 6:—
CV CV dm

>
o0
o
o
c
<
8
-
Y
(@)
>
=
n
.
()
=
c
o
=
o
©
e
=
S
<C

Arbitrary
n, Unit outward fixed
normal to dA control
surface
CS

dl ;n = vin ‘1"‘in Cos Hin dt d} ;vul = ‘:xu: dA out €08 Buul dt
=-VendA dt =VendAdt




Reynolds Transform Theorem (fixed cv)

m Change of the property B in the
system is related to three property change

System at
time f + dt

d .
e ﬂpdof/‘ Rate of change of B in
CV

n, Unit outward
normal to dA

dt the control volume

Fixed
control
volume
CV

through control surface

J' ﬁpVCOS QdADut Rate of B out of the CV
CS

Amirkabir University of Technology

Arbitrary
n, Unit outward fixed

R f B into the CV normal to dA control

ﬁpv COS 9 dAm ate o surface
through control surface S

@
Q (1“T = V. l]."' COS 0. ll’ ‘Il;m[ = "Zm[ ‘I"‘ out Cos Huul d,
B "l Vi



Reynolds Transform Theorem (fixed cv)

System at
time ¢ + dt

m Comparing System and CV at times t
and t+dt, we can write the following:

d d/ [ i [ , | [ .
— (Bgyst) = ( Bp d 1) + BpV cos 0 dA, — BpV cos 0 dA;,
cv

“CS “CS
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Reynolds transform formula for fixed control volume




Reynolds Transform Theorem (fixed cv)

m Another form:
- V cos @is the normal component of V to the surface:

Control surface

Flow terms = J BpV, dAq — [ BpV, dA;, = V. v, /
S CS / /
7/ dm = pV, dA

J B dmyy, — J B dm,

CS CS /

— In vector form (n is the outward normal unit vector of surface):

Outlet [RY% 4
flow \ y Sairiell urEGE flow y, Control surface
¥ /
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Reynolds Transform Theorem (fixed cv)

Bp(V +n) dA

[ v I
{ Boyst) = | ( Bp d”l-’“) +
Jcs

— —
dt dt \

Reynolds transform formula for fixed control volume
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Simpler?

Section 2:

m [n many practical applications the flow can be  uitemv: 40082 ctc

considered uniform. P
m |In the uniform flow, flow properties are
constant across the integral surfaces.

=

d d : '
= (Bgyst) = df( LV 6} dm) + E Bint; | o — 2 Bini |in

outlets
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Conservation of Mass (Integral form)

m [he property B is mass here.

dm
B =m and ,8=%=1

m Reynolds transform formula becomes:

/ !
(””) 0"([ pd°if>+ [ p(V, - n) dA
dt /s dt v cs

9

Conservation Law

(J' p doff) 4 J' P(Vr ‘n) dA = () Integral Mass
CV CS




Conservation of Mass (Integral form)

m Steady state flow
— Variation of property B with respect to t is zero:

Sum of mass flow rates of fluid

J p(V-:-n)dA =0 out of CV is equal to the mass
CS flow rate of fluid into the CV

m Uniform flow at inlet/outlet, steady flow:
E (PiAVi)in = E (Pi Ai Vi) out

2 (n:li)out — Z (n:li)in

l l
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Conservation of Mass (Integral form)

m Incompressible flow and the non-deforming CV:
Non-deforming CV

d d
dr(J;Vﬁp dV) = J E(ﬁp) dV

CV

d 9
dV ) + V.-n)dA = P : _
df(va ) LSP( ;e 1) 0 mmp L d°V+J p(V -n)dA =0

V of CS

Incompressible flow (p = cte)
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a -
J' pdoV—I—J'p(V«n)dA:()» Jp(V-n)dAO»J'(V‘n)dA:O
C CS CS

CS




Conservation of Mass (Integral form)

m Uniform flow on inlet and outlet ports:

||
M
=
=

Z_ (VEAE)Dut
EQDUI — EQin

For incompressible flow
The sum of volumetric flow into the non-deforming CV is equal to
the sum of the volumetric flow out of the non-deforming CV.
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Example 1

m Water flows in and out of a device. Calculate the rate of
change of the mass of water (dm/dt) in the device:

3m.

l Q; = 0.3 ft3/sec
Vi = 30 ft/sec Device‘_j

m, = 0.3 slug/sec
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Example 1:

m Assuming uniform flow on the inlet and Control surface
outlet ports: N

0= % pd¥ + f pn-Vda Tz _ Deviceyy  —
dm T
e — piA1V1 + p AV + p3AsVs
dm
OZW_PlA Vi + my + p3Qs
dm 2 1. 52) )
= X X — X + 0.
n — 1.94 slug/ft (71' 14d ft=x 30 ft/sec + 0.3 slug/sec

3 3
+ 1.94 slug/ft® X 0.3 ft3/sec —y ‘Z_'”:" = 1.975 slug/sec




Example 2 (tank discharge)

A 4-ft-high, 3-ft-diameter cylindrical
water tank is initially filled with water.
Now the discharge plug near the bottom
of the tank is pulled out, and a water jet
whose diameter is 0.5 in streams out.
The average velocity of the jet is
approximated as V = (2gh)%-5, Determine
how long it takes for the water level in
the tank to drop to 2 ft from the bottom.
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height of water in the tank measured
from the center of the hole u_)



Example 2 (tank discharge)

d pP= cte dV .
m(va(!V)Jer(V,-n)dAO —> — = — Qout
, uniform flow

dh I8 dh I8
Atanka — (Z thank)a — _VjetAjet = 2gh (Z Djzet)

thfmk dh
dt = —— With t =0, h = h,, \
Djzet \/ 2gl’l ‘

>
a0
o
o
c
<
0
-
Y
(@)
>
=
n
.
()
=
c
o
=
o
©
e
=
S
<C




Example 2 (tank discharge)

J[dl‘ . thank th dh = \/h/o o \/}72 (l)tank)2
0 Dfet\/2; n Vh \ g/2 D,
VAt — V21t (3 X 12in

2
[ = : = 757 s = 12.6 min
\V/32.2/2 ft/s? ( 0.5 in )

>
o0
o
o
c
<
0
-
Y
(@)
>
=
n
.
()
=
c
o
=
o
©
e
=
S
<C




System at

Moving control volume T

System and
CV at time ¢

m If the control volume moves at the
constant velocity Vs, the Reynolds
transform formula becomes: /

.-

)
— _I.'_ -

dV,,=—(V,*n)dA dr




