MECHANICS OF
FLUIDS

Lecture 9 - Differential Analysis
Lecturer: Hamidreza Norouzi

Amirkabir University of Technology https://web.stanford.edu,/group/fpc/cgi-bin/fpcwiki/Research/SupersonicJet



Note

m All the art-work contents of this lecture are obtained from the
following sources, unless otherwise stated:

— Fluid Mechanics, 8" edition, Frank M. White, McGraw-Hill,
2016.

- Fluid Mechanics: Fundamental and Applications, 3™ edition,
Yunus A. Cengel, John M. Cimbala, McGraw-Hill, 2014.
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Motivation

m We need more information about flow pattern in the process
- Reactive flows, multiphase flows

m The flow is so complex that the integral formulation may incur the
analysis

- Jet flows, compressible combustible flow, turbulent flows

m We perform differential analysis to obtain parameters that can be
used for integral formulation.

- Drag force, heat transfer coefficient, friction loss
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Mass conservation (Continuity)

m Consider a differential control volume

/ Control volume

with six faces

A N et

Pu dy d7 —— = =8
m From previous lectures, we have the et
following equation for mass conservation: :
dx
p
—dV + | p(V-n)dA =0
CV ol ., & p
Y Y
Rate of mass Rate of mass out of the CV through faces -

change in the CV Rate of mass into the CV through face

— [Pu+ 9 (pu) dx] dy dz
ox

———» Y



Mass conservation (Continuity)

/ Control volume

m Since the CV is differential, each surface
Is very small, we can consider uniform
flow at each face:

Pu dy d7 —i == — [ﬂu + 9 (pu) d.!.'] dy dz

Ox

A N et

———————————— — T

ot

I

)
[ —pd°V + D (PiAi Vidow — D, (PiAiV)in =0 ‘“’
cv f z

Y

1dV9 0

d 0
J » AV = »r dx dv dz rates into the CV — Sum of all mass flow rates out of the CV
ot ot T
CV

The rate of fluid mass change in the CV = Sum of all mass flow
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Mass conservation (Continuity)

- - Control volume
m Flow terms can be estimates as: T £
|
Pudy d7 — = ==o i —t—= [Pu+ %{ﬁu] dx] dy dz
i_____é:v_ _____ ., |
Face Inlet mass flow Outlet mass flow // g
X u dy dz ) | a
e [pu + :— (pu) dx |dy dz d“'
dx |
y pv dx dz J )
pv + Ty{pv) dy | dx dz
ay B
Z pw dx dy o |
pw + P (pw) dz | dx dy

1 d?
2! dx?

Recall : F(x + dx) = F(x) + = (F(x))dx + (F(x))dx? + -



Mass conservation (Continuity)

Rate of mass Sum of mass flow rate out of the CV - Sum of mass
change in the CV flow rate into the CV

Jp ¢

) ) )
—dxdydz + — (pu) dx dy dz + :— (pv) dx dy dz + :— (pw) dx dy dz = 0
Y ady aZ

of 0. _
‘+ dx dy dz

I.‘fffj' fT_J .rfJ ;fJ
+ —(pu) + —(pv) + —(pw) =0

ol o X ady a7
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Continuity equation for Cartesian coordinates




Mass conservation (Continuity)

m Introducing the divergence operator:

0 v, 0
— (pu) + — (pv) + — (pw) =V « (pV)
oX dy dZ

m The general continuity equation becomes:

P AV (pV) = 0
ot V) =
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Mass conservation (Continuity)

m For cylindrical coordinates:

ap n 1 o 1 o 4, } 0
—_— e b e — _— — —
o T 7oy 1PV T oo (pe) + (P
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Continuity equation

m Steady compressible flow: v . (pV) =0

d
Cartesian: ; — (pu) + — (p‘v) + — (pu) =0
X
Cylindrical ld(’l})—i—la( +‘:’( ) =0
'yvlindrical: —— —— — ) =
g y - rar P J0 Pve) 9z P
B = Incompressible flow: V:-V=0
E’ , du v W
§ Cartesian: —+ —+ —=
= X dy 07
, , 1 o 1 o )
Cylindrical: —— (rv,) + —— ('Ug) + — (’U) =0
radr 00 07







Material Derivation of velocity

m Consider that the velocity filed in a fluid varies with space and
time:
V(r,t) = iu(x,y,z,t) + ju(x,v. 2. 1) + kw(x, v, 2, 1)

m [he acceleration of the fluid then becomes:

v _.du .dv . dw
: Y ar dt

a:? dt

m For x-component we have:
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dr ar  adx dr  dy dr a7 dt

U v W

du(x,y,z.1)  ou dudx oudy udz
= — + +




Material derivative of velocity

du  ou u u du  ou ;
a,=—=—t+u—+v—+w—=—+(V-V)u
dt ol ox ady 07 ol
dv v kY] OV v v
a, = =—+tu—+v—+tw—=—+ (V- V)v
: dt df oX dy 07 ot
dw oW aw AL aw oW
d, = — —|—H,.— _I_U,—_{_w, :__—+(V'V)w
dt ot 0x dy JZ ot

m and in vector form
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(i {' \? fTJ XT rfJ \T 4: / \* ﬂ \T EJ \ . .
a = =—+|\lu—+v—+w—|=—+(V-V)V
dt ot 0X Ay a7 ot

[ocal Convective




Stress tensor

}1
H"I"l

f

)— x P T T Tyx Tox
U_‘l. 7
Oy

O O; = Txy —p t Ty T2y
Tz T}’:{ 4 + T
— Oy Stress tensor

oy
o, s

Oz
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0, ;= Stress in j
direction on a face
normal to { axis

-1




Linear momentum equation

m Recall the force balance equation for the differential fluid element in
the Cartesian coordinates (lecture 2):

Ef — fpress + fgrav + fvisc — _VP + Pg + fvisc — Pa

m Or equivalently, we can say for a differential control volume:

IV
SF= pl{—rd.rd_vdz

[l

Sum of all surface forces and
body forces (act on volume)

* Weight

* Pressure and stress
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Linear momentum equation

m The net surface force acting on the CV in x-direction:

do,,
— dy) dxdz
ay

{D'_r.t +

Note:

Recall our direction convention,

Stress is propagated from greater x to
o i ey lesser x

do,

O AV d7 < — (O +

dx
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(0 + % dz) dx dy




Linear momentum equation

o 5, 0
dFt surf — |: (J‘tt) _|_ L ( }-‘1) + L (Jg;t)} d-r Ef_“? d:
dx ady 07
dF, dp+a( )+a( )+EJ( )
f— _ _ T —_— R T':r'
dV ax  ax T ay dz

m Similarly for y and z directions:
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dF, ap 0 - 9 L ) ()

— T 1 T T!! - Tv.'
dV ay Ei.r o ay Wgz 0 °
dF, ap 0

= ——+ —(Ty) + — ,,+— -
dV ik e _(T‘} Az (T)




Linear momentum equation

m And finally sum of surface forces in three directions:
dF - 0Ty OT.
() g(m) BT
— _vp, + | —— VISCOus dx d,‘” dZ
dV e dV viscous (81'13, 0T EJTZJ,)
+jl—+ —+ —
ox ady 07

r:Jsz 0 Th" d Tzz
+ Kk — + — + —
ox d"\,-‘ a7

Too Ty Tx

T = | Ty Ty To
- TXE’. T‘lr’f:'. TEE —

Viscous stress tensor Components of viscous shear stress




Linear momentum equation

m And the body force on the control volume is:

ngrav = Pg dx d_}’ dz

m Then the general force balance equation becomes:

IV
SF = pt?dxch d-

‘Substitution from previous relations and dividing by (dx.dy.dz)

Y LA N N
pg = ¥P Ti = P\ar T ar T Vo T War
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Linear momentum equation

m In component form for cartesian coordinates:

p 0T, 9Ty 0T, ou ul ou ul
Py — T — — +—=p\—tu—t+tvUv_—+tw_—
oX dX ady dZ ol oX dy 07
dp dTy, 0Ty, JdT, IV U IV IV
[}LE:T - - T - - Ll - — j} r —I_ ‘rf - Ll T_j - —I_ 11'. -
' ady X ay dZ ol 0X dy 07
ap JTy; T T, oW aw oW aw
08, — . T + =p +tu—+v—+w
) - - - - - - - -
‘ dZ oX ady 07 dl oX dy 07




Navier-Stokes equations

m In parallel plate flow, we showed that the 7, is
related to the strain rate for a Newtonian fluid.

--.'r':

4

No slip at wall

u(y)
m Where the stress acts from greatery to the Vﬂlﬂé:]ity
rolic

g lessery. P
_ jydu
L b=
: dy
é




Navier-Stokes equations

m [n a 3D flow, for incompressible, Newtonian fluid we have:

T T 2

Viscous stress j Strain rate

Dynamic viscosity

o ow
: - 877 : -
dy 07

)

3

|
DO | —
7N
QB |
S| &
QJ|QJ
= | <
N

M

g

\®)

l(aw au) _1(81/
—— + — e = —|—+ —
0X 0z 2\ 0z dy



Navier-Stokes equations

m Viscous stress tensor for a general viscous flow and for an
incompressible, Newtonian fluid:

To Ty T v du &Y, v
T Ty Tz (an au) (an av) I
Max " az) Moy T oz Haz



Navier-Stokes equations

m Consider x-component of momentum equation:

Pg:— T T T

p 0T, 0Ty 0T, du ou
: : : P
0X 0X 0y 0z

ou

dy

dul

dx dx dz

JP o2 9 (v du 9 [ aw
—_—+pgx+2;.t,_2—|—p— — 4+ — |+ u- —

dy \ dx dy

dx

aw
A



Navier-Stokes equations

m By changing the order of derivatives in the underlined terms:

P 9%t J ou Jd v 0%u J ow  du
— o pg tp o+ + T +
X

2

dx* Jdx dx dx dy a}-'z dx dz 97

$

oP N N J [ du N v N oW N U N 9% N E}EH‘]
ox | P& T Bl Lox Jy 97 axr a9y 977

A - g
~

Is zero, continuity equation
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Navier-Stokes equations

m In general, the momentum equations in all directions take the
form, which are known as Navier-Stokes equations.

Al u aul ol JP Fu  *u  0*u
pl — Tt U—— TV — T W —|=—"—Tpg TN ~+ T —

_ at dx dy a7 dx ax?  oyr 072
. v v op N 9*v N 9*v N 9*v
2 — tu—+v w— | = —— , - -
S P at dx Jy 97 Jy ey T K ax*  ayr 9
% ow N oW n Jw r ow P n n 9*w N 9*w o 9*w
5 — tu—+v w— | = —— 2. - - -

= P\ ar dx Jy 07 a7 PET\ ey > 97’
<C

Navier-Stokes equations in Cartesian coordinates




Navier-Stokes equations

m [n cylindrical coordinates:

Trr ' rd Tr:
Ti — | Tor Ton To:
Tar Tz 2z
/ o, 0 (t 1 du,
“K ar K ar\ r roof
a U | du | ou I
ar\ r roof r o0 I
(dur dul ) (due | du_)
+ — + ——
\ . dz ar oz r o6
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Navier-Stokes equations

1 o(ru, 1 d(u d(u.) o
— (ru4,) - (149) 4+ < =0 Continuity
roor r d6 0z
It du. U, ou. U It
p i A It A W s AT s r-component
ot " or 90 r “ 9z
IP N N {1 o [ au, hy | Pu, 2 du, . azu,,]
= —— ¥ —_— = r —_— 5 —_—
o Por TR, ar .1 LR ST 97>
du dul Uy dUl U .u du
P — + u, ’ + A S o + ”7_5' 0-component
at ar ro06 r © 9z
1 9P | 9 au T | o%u 2 du.  9u
- ___+Pf~i'e+ﬁ{—(— r— )=t S+ S 9]
I a6 ' Foor ar 2 r? 90? 1% 96 972
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Navier-Stokes equations

(du ou, i, Jll, au,)
— 4+ y — + —— 4+ u, — -component
P\ ot rar | r 90 3z £eomp
dP+ . l.fr( au:)+1drf+
9 p o
a7 PS: i ror ar r* 96°

-
d“n:
a.-.z
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Flow between parallel plates (Couette flow)

Consider 2D incompressible flow between
two parallel plates with the distance 2h. We
assume plates are too wide and long and
hence, v=0and w = 0. Find the velocity

y=+h

Y-

distribution between these two plates at
fully developed condition.

v=-h




Flow between parallel plates (Couette flow)

m Since the flow is two dimensional, velocity _

components are function of x and y, only u
and v components present. y

m From continuity equation for T s
Incompressible flow: .
du Jv aw au
— T —=0=—+0+0 -
aoxX dy adZ ox v=—h

Fixed

m This shows that u is a function of y only.
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u = u(y) only




Flow between parallel plates (Couette flow)

The fully developed laminar conditions implies that, the flow should
be steady, thus there is not change with respect to time.

The x-component momentum equation for Newtonian fluid (2D
version) at steady conditions:




Two boundary conditions at walls (no-slip condition):
(1)y=-h,u=0
(2)y=h, u=V

Applying boundary conditions, we get:

vV V V V
Ci=> and C=- NP |u=- y+-
2h 2 2 2
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Fully developed Laminar flow in pipe

Growing
boundary
layers

Inviscid
core flow

N/

Boundary
layers
merge

[

Developed
velocity
profile u(r)

/

ﬂ)

[

YYYYYY

\

\L

Yy

Entrance length L,

(developing profile region)

Fully developed
flow region

4/\/—>



Fully developed Laminar flow in pipe

>
o0
o
o
c
<
5
-
Y—
(@)
>
=

rkabir Univers

Ami




Exam ple (pipe flow)

Consider a laminar flow in a pipe | Pipe wall
wherein a constant pressure gradient
IS applied in x-direction, that cause
the flow. Derive and expression for
the steady velocity field inside the
pipe at fully developed condition.
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Example (pipe flow)

m Assumptions:
1. The pipe is infinitely long in the x-direction.
2. The flow is steady (all partial time derivatives are zero).
3. This is a parallel flow (the r-component of velocity, ur, is zero).
4

. The fluid is incompressible and Newtonian with constant
properties, and the flow is laminar.

A constant pressure gradient is applied in the x-direction.

The velocity field is axisymmetric with no swirl, implying that u,
IS Zero.

/. We ignore the effects of gravity.

o O
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Exam ple (pipe flow)

Continuity equation for compressible flow:

| a(z 1 0 dut au
;7£+7ﬁ+—:0 — — =0
ar 00 X dx

assumption 3 assumption 6

Since the flow is not a function of time (steady condition) and 0
(assumption 6), we can conclude that:

u = u(r) only
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Exam ple (pipe flow)

IR A I )

T-:ﬁumptmn 2 aﬁ%umptmn 3 ﬁmmptmn 6 CGIltIﬂU][}
-
I o ou | 24 o
= ——— t 9% —Ar =)t it 5
— rar\  adr 06° X
—_
assumption 7 assumption 6 continuity
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1 d( du) 1 0P
|
rdr\  dr M Ox




Example (pipe flow)

Integrating the previous ODE for two times gives:

2 2 dp
rd—u: ! dP —I— Cl U :r___l_ Cl ln}"-l- Cr)
4w dx -

Boundary conditions:
(1) r =R =»u =0 (no-slip conditions)

(2) r =0 =»du/dr = 0 (symmetry in the profile or the value of u should be finite
at center)




Example (pipe flow)

m Boundary condition #2:

C, =0
m Boundary condition #1:
R> dP R? dP
U=—=—+0+C,=0 - C,=———
4 dx - 4 dx

m Substitution into the equation and rearranging give:

1 dP
U= dx (r* — R*) <4mm Verify it!




Example (pipe flow)

m Maximum velocity at r = 0:

R* dP
g = —
s 4 dx
; m Average volume flow rate:
E 27 (R
V=J J ur dr d =
% 0=0 Jr=0
20 dP (¥ R* dP
u j (r? — R)rdr = ——
4 dx J.— 8w dx




Example (pipe flow)

Average axial velocity:

Vo V  (—mR'/8w) (dPldx)  R® dP
A 7R?  8u dx

Pressure drop for a segment with the length L:

- D% AP AP_(L) 32uV
- 32u L —\D D
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+ 3V AP (L) 64 _(L) 64
— vz \D/\pvD ) \D/\Re




Flow between two fixed plates due to pressure gradient

Fixed
Consider a fluid between two infinite y=+h
parallel plates which move due to
pressure gradient along x-axis. Find ‘ N\
the velocity distribution of the fluid at | X |
fully developed condition. _ /) Hmax
> u(y)

y=-h
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Flow between two fixed plates due to pressure gradient

m Sincev=0andw =0, we have the following from continuity
equation:

ou Bk, ow ou

ox Ay dz 0X

m [he x-component of momentum equation:

) P
dy? )X

X




Flow between two fixed plates due to pressure gradient

This implies that: du  dp
L e = o = const < 0

Double integration from above equation:

1 dp y2
u — Ea? + Cl}f’ + C-p_
Two boundary conditions at walls (no-slip condition):

y=-hu=0 C, =0

y=h, u=0 —
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b
dx 21




Flow between two fixed plates due to pressure gradient

The velocity profile:

()
dx 2L h?

And the maximum velocity occurs aty = O:

u =

i max

dx 21

Average velocity across the channel (the depth is b):

V 1 J dA 71 JM (1 yz) b d 2
av o, : — ‘max ) V = 7 Upax
SRS R Y075 Y )" e 3t
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Flow between two fixed plates due to pressure gradient

Shear stress at walls

- B du  JvU
Tw = Txywan = MK g + E

)G 5)
=\ Nzl -=
e Jy dx /] \ 2 h? y
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Viscous flow in a rotary viscometer

Consider a fluid of constant density and
viscosity between two concentric
cylinders. There is no axial motion or end
effect. Let the inner cylinder rotate at
angular velocity £2 . Let the outer cylinder
be fixed. There is circular symmetry,

so the velocity does not vary with 6 and
varies only with r.
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Viscous flow in a rotary viscometer

| d(ru,)
— +
rooor

‘ ru, = const v, = () Walls are impermeable

difg duﬁ/ 1] /f H/
( -+ u, A A Sis 7

d9 f az

0 I o 1 9 dug HH | d}ég 2 d/ 9° r/
— — = + p‘."ﬂ —|— _
r b0 ror\  or /dﬂé ;~

o/ 0 o
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Viscous flow in a rotary viscometer

Cauchy-Euler

| d d’Ug (O Equation
——|r—)=— D) m?>-1=0>m=x+1
r—’

&
Outer, at r = r,: v, =0=Cyr, + —=

Boundary
conditions
9

Inner, at r = r;: v = Qi = Cyr;

r,lr — rlr, Cauchy-Euler

Vg — Q f dE d
¢ “rlr — rilr, E —l—a:x:d—y +by =10

m? + (a—1)m+b=0
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