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Note

■ All the art-work contents of this lecture are obtained from the 

following sources, unless otherwise stated:

– Fluid Mechanics, 8th edition, Frank M. White, McGraw-Hill, 

2016.

– Fluid Mechanics: Fundamental and Applications, 3rd edition, 

Yunus A. Cengel, John M. Cimbala, McGraw-Hill, 2014. 
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Motivation

■ We need more information about flow pattern in the process

– Reactive flows, multiphase flows

■ The flow is so complex that the integral formulation may incur the 
analysis

– Jet flows, compressible combustible flow, turbulent flows 

■ We perform differential analysis to obtain parameters that can be 
used for integral formulation. 

– Drag force, heat transfer coefficient, friction lossA
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Mass conservation (Continuity)

■ Consider a differential control volume

with six faces

■ From previous lectures, we have the

following equation for mass conservation:
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Rate of mass 

change in the CV

Rate of mass out of the CV through faces –

Rate of mass into the CV through face



Mass conservation (Continuity)

■ Since the CV is differential, each surface

is very small, we can consider uniform

flow at each face:
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dV→ 0

The rate of fluid mass change in the CV = Sum of all mass flow 

rates into the CV ― Sum of all mass flow rates out of the CV



Mass conservation (Continuity)

■ Flow terms can be estimates as:
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Mass conservation (Continuity)
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 dx dy dz

Rate of mass 

change in the CV

Sum of mass flow rate out of the CV – Sum of mass 

flow rate into the CV

Continuity equation for Cartesian coordinates



Mass conservation (Continuity)

■ Introducing the divergence operator: 

■ The general continuity equation becomes:
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Mass conservation (Continuity)

■ For cylindrical coordinates: 
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Continuity equation 

■ Steady compressible flow:

■ Incompressible flow:
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Material Derivation of velocity

■ Consider that the velocity filed in a fluid varies with space and 

time:

■ The acceleration of the fluid then becomes:

■ For x-component we have:
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Material derivative of velocity

■ and in vector form
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Stress tensor 
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Linear momentum equation

■ Recall the force balance equation for the differential fluid element in 

the Cartesian coordinates (lecture 2):

■ Or equivalently, we can say for a differential control volume:
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Sum of all surface forces and 

body forces (act on volume)

• Weight

• Pressure and stress



Linear momentum equation
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■ The net surface force acting on the CV in x-direction:

Note:

Recall our direction convention,

Stress is propagated from greater x to 

lesser x



Linear momentum equation

■ Similarly for y and z directions:
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Linear momentum equation

■ And finally sum of surface forces in three directions:
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Viscous stress tensor Components of viscous shear stress



Linear momentum equation

■ And the body force on the control volume is:

■ Then the general force balance equation becomes:
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Substitution from previous relations and dividing by (dx.dy.dz)
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Linear momentum equation

■ In component form for cartesian coordinates:
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Navier-Stokes equations

■ In parallel plate flow, we showed that the xy is 

related to the strain rate for a Newtonian fluid.

■ Where the stress acts from greater y to the 

lesser y. 
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Navier-Stokes equations

■ In a 3D flow, for incompressible, Newtonian fluid we have:
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Strain rate

Dynamic viscosity

Viscous stress



Navier-Stokes equations

■ Viscous stress tensor for a general viscous flow and for an 

incompressible, Newtonian fluid:
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Navier-Stokes equations

■ Consider x-component of momentum equation:

■ The left-hand side becomes:
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Navier-Stokes equations

■ By changing the order of derivatives in the underlined terms:
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Navier-Stokes equations

■ In general, the momentum equations in all directions take the 

form, which are known as Navier-Stokes equations.
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Navier-Stokes equations in Cartesian coordinates



Navier-Stokes equations

■ In cylindrical coordinates:
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Navier-Stokes equations
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Continuity 

r-component

-component



Navier-Stokes equations
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z-component



Flow between parallel plates (Couette flow)

Consider 2D incompressible flow between 

two parallel plates with the distance 2h. We 

assume plates are too wide and long and 

hence, v = 0 and w = 0. Find the velocity 

distribution between these two plates at 

fully developed condition. 
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Flow between parallel plates (Couette flow)

■ Since the flow is two dimensional, velocity 

components are function of x and y, only u

and v components present.

■ From continuity equation for 

incompressible flow:

■ This shows that u is a function of y only. 
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Flow between parallel plates (Couette flow)

The fully developed laminar conditions implies that, the flow should 

be steady, thus there is not change with respect to time.

The x-component momentum equation for Newtonian fluid (2D  

version) at steady conditions:

A
m

ir
k
a

b
ir

 U
n

iv
e

rs
it

y 
o

f 
Te

c
h

n
o

lo
g
y

32

0 00 0 0



Two boundary conditions at walls (no-slip condition):

(1) y = - h, u = 0

(2) y = h,  u = V

Applying boundary conditions, we get:
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Fully developed Laminar flow in pipe
A

m
ir

k
a

b
ir

 U
n

iv
e

rs
it

y 
o

f 
Te

c
h

n
o

lo
g
y

34



Fully developed Laminar flow in pipe
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Example (pipe flow)

Consider a laminar flow in a pipe 

wherein a constant pressure gradient 

is applied in x-direction, that cause 

the flow. Derive and expression for 

the steady velocity field inside the 

pipe at fully developed condition.
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Example (pipe flow)

■ Assumptions:

1. The pipe is infinitely long in the x-direction.

2. The flow is steady (all partial time derivatives are zero).

3. This is a parallel flow (the r-component of velocity, ur, is zero).

4. The fluid is incompressible and Newtonian with constant 

properties, and the flow is laminar.

5. A constant pressure gradient is applied in the x-direction.

6. The velocity field is axisymmetric with no swirl, implying that u

is zero.

7. We ignore the effects of gravity.
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Example (pipe flow)

Continuity equation for compressible flow:

Since the flow is not a function of time (steady condition) and 
(assumption 6), we can conclude that: 
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Example (pipe flow)
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Example (pipe flow)

Integrating the previous ODE for two times gives:

Boundary conditions: 

(1) r = R ➔ u = 0 (no-slip conditions)

(2) r = 0 ➔ du/dr = 0 (symmetry in the profile or the value of u should be finite 
at center) 
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Example (pipe flow)

■ Boundary condition #2:

■ Boundary condition #1:

■ Substitution into the equation and rearranging give:
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Example (pipe flow)

■ Maximum velocity at r = 0: 

■ Average volume flow rate:
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Example (pipe flow)

Average axial velocity:

Pressure drop for a segment with the length L:
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Flow between two fixed plates due to pressure gradient

Consider a fluid between two infinite 

parallel plates which move due to 

pressure gradient along x-axis. Find 

the velocity distribution of the fluid at 

fully developed condition. 
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Flow between two fixed plates due to pressure gradient

■ Since v = 0 and w = 0, we have the following from continuity 

equation: 

■ The x-component of momentum equation:
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Flow between two fixed plates due to pressure gradient

This implies that:

Double integration from above equation: 

Two boundary conditions at walls (no-slip condition):

y = - h, u = 0

y = h,  u = 0
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Flow between two fixed plates due to pressure gradient

The velocity profile:

And the maximum velocity occurs at y = 0:

Average velocity across the channel (the depth is b):
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Flow between two fixed plates due to pressure gradient

Shear stress at walls
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Viscous flow in a rotary viscometer

Consider a fluid of constant density and 

viscosity between two concentric 

cylinders. There is no axial motion or end 

effect. Let the inner cylinder rotate at 

angular velocity i . Let the outer cylinder 

be fixed. There is circular symmetry,

so the velocity does not vary with  and 

varies only with r.
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Viscous flow in a rotary viscometer
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Viscous flow in a rotary viscometer
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Cauchy-Euler 

Equation

m2 -1 = 0 ➔ m =  1
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